Prepared by Prof. Hui Jiang (COSC3221) 2/9/2007

How OS manages CPU usage?

CSE3221.3

Operating System Fundamentals . How CPU is used?

— Users run programs in CPU
* In a multiprogramming system, a CPU always has several jobs

N0.2 to run.

* How to define a CPU job?
— The important concept:

Process

PROCESS

Prof. Hui Jiang
Dept of Computer Science and Engineering
York University

P
Process Process vs. Program Code
* Process is arunning program, a program in execution.
* Process is a basic unit of CPU activities, a process is a unit of
work in a multiprogramming system. Program code
« Many different processes in a multiprogramming system: | | @B—p-—-""7"7 '_ PC
— User processes executing user code Mov AX, 0x10 Code T
« Word processor, Web browser, email editor, etc. Mov BX, CX H
— System processes executing operating system codes Push CX ;:’ Stack
7 .
« CPU scheduling RCVEXRX 27 :
oM OUT 0x11,CX Pid : :
emory-management PP X R : Registers :
* /0 operation . E e P
« Multiple processes concurrently run in a CPU.
~, 3
Process
Memory

Dept. of CS, York Univ. 1

Prepared by Prof. Hui Jiang (COSC3221)

Process

* A Process includes:

— Text Section: memory segment including program
codes.

— Program Counter (PC): the address of the
instruction to be executed next.

— All CPU’s Registers

— Stack: memory segment to save temporary data,
such as local variable, function parameters,
return address, ...

— Data Section: memory segment containing global
and static variables.

Process in Memory

stack

e
I

heap
data

text

0
Process Control Block |

Dept. of CS, York Univ.

Process in Memory

Main Processor
M emory Registers

Processindex L1
[m—
i
Process,
e =
| —‘

—=
Other .
register
—]
Context
Process Data
A | —
[Program
(code)
b
Context
h| Data

[Program
(code)

Process.
B

—

R DL STt (PRI fii

Data Structure to represent a Process:
Process Control Block (PCB)
process state - Process state

process number « Program counter
program counter * CPU registers
e CPU scheduling information
registers ¢ Memory-management
information
memory limits « Accounting information
list of open files /O status information
e o o

2/9/2007

Prepared by Prof. Hui Jiang (COSC3221)

Process States

1/0 or event completion

admitted interrupt exit terminated

scheduler dispatch Voot Evant wait

waiting

« New: the process is just being created

* Running: instructions are being executed by CPU

« Waiting: waiting for some event, /O completion or a signal
* Ready: waiting to be assigned to CPU to run

« Terminated: it finished execution

Scheduling Queues

disk
unit 0

queue header PCB, PCB,

mag :
ape =

meg .
ape = PCB, PCB PCB,
unit 1 > : i <

-—

registers registers
g .

PCB,

erminal ‘

unit 0 |

Dept. of CS, York Univ.

Process Scheduling:
scheduling queues

* Scheduling Queues:
— List of processes competing for the same resource.

* Queues is generally implemented as linked lists.

« Eachitem in the linked list is PCB of a process, we extend each
PCB to include a pointer to point to next PCB in the queue.

« Examples of scheduling queues:
— Ready Queue: all processes waiting for CPU

— Device Queues: all processes waiting for a particular device;
Each device has its own device queue.

Queuing Diagram
: ready queue » CPU
1/0 queue H 1/O request }1—

time slice
expired
child fork a
executes child
interrupt wait for an
\churs interrupt

2/9/2007

Prepared by Prof. Hui Jiang (COSC3221)

Schedulers

« The scheduler’s role
« Scheduler categories:
— Long-term Scheduler (Job scheduler):
* choose a job from job pool to load into memory to start.

« Control the degree of multiprogramming — number of
process in memory.

« Select a good mix of I/0O-bound processes and CPU-bound
processes.

— Short-term scheduler (CPU scheduler)

« Executed very frequently (once every 100 millisecond).
* Must be fast for efficiency.

— Medium-term scheduler: SWAPPING
* Swap out / swap in.

« Select a process from ready queue to run once CPU is free.

Context Switch

« Context Switch: switching the CPU from one process to another.
— Saving the state of old process to its PCB.
— CPU scheduling: select a new process.
— Loading the saved state in its PCB for the new process.

« The context of a process is represented by its PCB.

« Context-switch time is pure overhead of the system, typically
from 1-1000 microseconds, mainly depending on:

— Memory speed.

— Number of registers.

— Existence of special instruction.

— The more complex OS, the more to save.

« Context switch has become such a performance bottleneck in a
large multi-programming system:

— New structure to reduce the overhead: THREAD.

Dept. of CS, York Univ.

CPU Switch from process to process:
how to use PCB

process P, operating system process P,

interrupt or system call

executing Jl
T save state into PCB,
.

reload state from PCB;

ridle interrupt or system call executing

save state into PCB;

f idle

idle

reload state from PCB,
executing 1

Context Switch: example

Addess Main Memory Program Counter
0 8000

100

Dispatcher

5000

Process A

8000

Process B

12000

Process C

2/9/2007

Prepared by Prof. Hui Jiang (COSC3221)

Trace of Processes

5000 8000 12000
5001 8001 12001
5002 2002 12002
5003 8003 12003
5004 12004
5005 12005
5006 12006
5007 12007
5008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of Process A | (b) Trace of Process B | (c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Process State

Process A ‘ ‘ ‘ |

Process B

Process C [‘ |

Dispatcher ‘ | | ‘ | ‘ |

0 5 10 15 20 25 30 a5 40

:I = Running, l:l = Ready

'

Dept. of CS, York Univ.

45

50

Trace of Processes

1 5000 27 12004
2 5001 28 12005

3 so02 0 EEe.amen Time out
4 5003 29

5 5004 30

6 5005 31

,,,,,,,,,,,,,,,,,, Time out 32

7 100 33

8 101 34

9 102 3s

10 103 s

11 104 37

12 105 38

13 8000 39

14 2001 40

35 BOOE 0 peeermeedl Time out
16 8003 41 100

............... /O request 42 101

17 100 43 102

18 101 A4 103

19 102 45 104

20 103 46 105

21 104 47 12006

22 105 48 12007

23 12000 49 12008

24 12001 50 12009

25 12002 51 12010

26 12003 52 12011

777777777777777777 Time out

areas indicate execution of dispatche:
first and third columns count instruction
s=cond and fourth columas show addres:

ocess;

ruction being executed

Operations on Processes
(UNIX as an example)

e Process creation.

* Process termination.

* Inter-process communication (IPC).
* Unix programming:

— Multiple-process programming.
— Cooperating process tasks.

2/9/2007

Prepared by Prof. Hui Jiang (COSC3221)

e
Process Creation(1)

« A process can create some new processes via a create-
process system call:

— Parent process / children process.
« All process in Unix form a tree structure.

s N R
i T T T
N S ey e e i L = il g a5 =1

UNIX Example: fork()

« In UNIX, each process is identified by its process number (pid).
« In UNIX, fork() is used to create a new process.
« Creating a new process with fork():

— New child process is created by fork().

— Parent process’ address space is copied to new process’
space (initially identical address space).

— Both child and parent processes continue execution from the
instruction after fork().

— Return code of fork() is different: in child process, return code
is zero, in parent process, return code is nonzero (it is the
process number of the new child process)

— If desirable, another system call execlp() can be used by one of
these two processes to load a new program to replace its
original memory space.

Dept. of CS, York Univ.

e
Process Creation(2)

* Resource Allocation of child process
— The child process get its resource from OS directly.
— Constrain to its parent’s resources.

« Parent status
— The parent continues to execute concurrently with its children.
— The parent waits until its children terminate.

« Initialization of child process address space
— Child process is a duplicate of its parent process.

— Child process has a program loaded into it.

« How to pass parameters (initialization data) from parent to child?

Typical Usage of fork()

#include <stdio.h>
void main(int argc, char *argv[])

int pid ;

I* fork another process */
pid = fork() ;

if (pid <0) { /* error occurred */
fprintf(stderr, “Fork Failed\n") ;
exit(-1) ;
} elseif (pid ==0) { /* child process*/
execlp(“/bin/ls”,"1s” ,NULL) ;
} else{ /* parent process */
I* parent will wait for the child to complete */
wait(NULL);
printf (“Child Complete\n”) ;
exit(0) ;

e e e

2/9/2007

Prepared by Prof. Hui Jiang (COSC3221)

Process Termination

* Normal termination:
— Finishes executing its final instruction or call exit() system call.
« Abnormal termination: make system call abort().

— The parent process can cause one of its child processes to
terminate.

¢ The child uses too much resources.
* The task assigned to the child is no longer needed.

« If the parent exits, all its children must be terminated in some
systems.

* Process termination:
— The process returns data (output) to its parent process.

« In UNIX, the terminated child process number is return by
wait() in parent process.

— Allits resources are de-allocated by OS

Cooperating Processes

« Concurrent processes executing in the operating system
— Independent: runs alone
— Cooperating: it can affect or be affected by other processes

* Why cooperating processes?
— Information sharing
— Computation speedup
— Modularity
— Convenience

« Need inter-process communication (IPC) mechanism for
cooperating processes:

— Shared-memory
— Message-passing

Dept. of CS, York Univ.

Multiple-Process Programming in Unix

« Unix system calls for process control:
— getid(): get process ID (pid) of calling process.
— fork(): create a new process.
— exec(): load a new program to run.
« execl(char *pathname, char *argo, ...);
« execv(char *pathname, char* argv[]) ;
« execle(), execve(), execlp(), execvp()
wait(), waitid(): wait child process to terminate.
— exit(), abort(): a process terminates.

IPC Approaches
process A process A

mE

shared g
2

process B process B =

2 1
Ty
kernel M |4 kernel
(a) (b)

2/9/2007

Prepared by Prof. Hui Jiang (COSC3221)

Inter-process Communication (IPC):
Message Passing

« IPC with message passing provides a mechanism to allow
processes to communicate and to synchronize their actions
without sharing the same address space.

IPC based on message-passing system:
— Processes communication without sharing space.
— Communication is done through the passing of messages.
— At least two operations:
* send(message)
* receive(message)
— Message size: fixed vs. variable
— Logical communication link:
« Direct vs. indirect communication
* Symmetric vs. asymmetric communication
« Automatic or explicit buffering

Indirect Communication

« The messages are sent to and received from mailbox.

« Mailbox is a logical unit where message can be placed or removed by
processes. (each mailbox has a unique id)

— send(A,message): A is mailbox ID
— receive(A,message)
¢ Alink is established in two processes which share mailbox.
« Alink may be associated with more than two processes.
« A number of different link may exist between each pair of processes.
* OS provides some operations on mailbox
— Create a new mailbox
— Send and receive message through the mailbox
— Delete a mailbox

Dept. of CS, York Univ.

Direct Communication

« Each process must explicitly name the recipient or sender of the
communication.

— send(P,message)

— Receive(Q,message)
« Alink is established between each pair of processes
* Alink is associated with exactly two processes

« Asymmetric direct communication: no need for recipient to name
the sender

— send(P,message)

— receive(&id,message): id return the sender identity
« Disadvantage of direct communication:

— Limited modularity due to explicit process naming

Synchronization in message-passing

* Message passing may be either blocking or non-blocking.
« Blocking is considered synchronous
* Non-blocking is considered asynchronous

« send() and receive() primitives may be either blocking or non-
blocking.

— Blocking send

— Non-blocking send

— Blocking receive

— Non-blocking receive

« When both the send and receive are blocking, we have a
rendezvous between the sender and the receiver.

2/9/2007

Prepared by Prof. Hui Jiang (COSC3221)

Signal function in Unix

« Signal is atechnique to notify a process that some events have

occurred.

Buffering in message-passing

« The buffering provided by the logical link:

— Zero capacity: the sender must block until the recipient
receives the message (no buffering).

— Bounded capacity: the buffer has finite length. The
sender doesn’t block unless the buffer is full.

— Unbounded capacity: the sender never blocks.

* Ot

IPC in UNIX

Signals

Pipes

Message queues
Shared memory
Sockets

others

* The process has three choices to deal with the signal:

— Ignore the signal

— Let the default action occur.

— Provide a function that is called when the signals occurs.
« signal() function: change the action function for a signal

#include <signal.h>

void (*signal(int signo, void (*func) (int)) ;

« kill() function: send a signal to another process

#include <sys/types.h>

#include <signal.h>

int kill (int pid, int signo) ;

Dept. of CS, York Univ.

Unix Signals

Default action

Name | Description 17 |ANSI.C POSD(1|SVRS 43+BSD
SIGABRT [abnormal fermination (abort) e W | AR
SIGALRM |time out{alarm) el .l . .
SIGBUS |hardware fault ! P .
SIGOHID | change in status of child s job | =il
SIGCONT | continue stopped process { job | e .
sIcEMr |hardware fault w] e .
SIGFPE |arithmetic exception Frie & . ‘ . .
SIGHUP |hangup | - . .
SIGILL |illegal hardware instruction [A
SIGINFO |status request from keyboard | | .
SIGINT |terminal interrupt character | g |- .
SIGI0 |asynchronous /O ; . .
SIGIOT | hardware fault | | - .
SIGKILL | termination ! - . .
SIGRIEE | write to pipe with no readers o . .
SIGPOLL |pollable event {po1l) | | o
SIGPROF | profiling time alarm (set itimer) | . .
SIGPWR | power fail/restart .
STGQUIT |terminal quit character | . . .
SIGSEGV |invalid memory reference
SIGSTOP |siop job | e .
s1GsYs | invalid system call . .

| SIGTERM | termination . - . .
SIGIRAP | hardware fault . .
| s1678TP |terminal stop character . .
| sTerTIN | background read from control tty - -
| S16PT00 | background write to control try . .
SIGURG |urgent condlition Il & .
SIGUSR1 |userdefined signal | * .
SIGUSR2 |userdefined signal . .
SIGVTALRM) virtual time alarm (setitimer) . .
SIGHINCH . .
SIGKCPU | CPU limit exceeded (setrlimit) . .
STGKESZ _|file size limit exceeded (setzlimit) . .

terminate w/core
terminate
terminate w /core
ignore
continue/ignore
terminate w/core
terminate w/core
terminate
terminate w/ core
ignore
terminate
terminate/ignore
terminate w/core
terminate
terminate
terminate
terminate

ignore

terminate w/core
terminate w/core
stop process
terminate w/core
terminate
terminate w/ core
stop process
|stop process

stop process
|ignore

terminate
|terminate
|terminate

ignare
|terminate w/core
|terminate ye/core

2/9/2007

Prepared by Prof. Hui Jiang (COSC3221)

Example: signal in UNIX

#include <signal.h> « Event SIGINT: type the
interrupt key (Ctrl+C)

* The default action is to

int main() { terminate the process.

< Now we change the default
action into printing a
message to screen.

static void sig_int(int) ;

if(signal(SIGINT,sig_int)==SIG_ERR)
err_sys(“signal error”) ;

sleep(100) ;

void sig_int(int signo)

printf(" Interrupt\n”) ;

}

Unix pipe: example

user process

fd[0] fd[a]

kernel

—-—

parent child

fd[0] fd[a] | | fd[o] fd[1]

.

Dept. of CS, York Univ.

Unix Pipe
» Half-duplex; only between parent and child.
» Creating a pipe:
— Call pipe();
— Then call fork();
— Close some ends to be a half-duplex pipe.

#i ncl ude <uni std. h>

int pipe(int filedes[2]) ;

Unix Pipe: example

int main() {

int n, fd[2] ;
int pid;
char line[200] ;

if(pipe(fd) <0) err_sys(“pipe error”) ;

if ((pid="fork()) <0) err_sys(“fork error”) ;
elseif (pid>0) {
close(fd[0]) ;
wite(fd[1], “hello word\n", 12) ;
} else {
close(fd[1]) ;
n = read(fd[0], |ine, 200) ;
wite(STDOUT_FILENO, line, n) ;

exit(0) ;

2/9/2007

10

Prepared by Prof. Hui Jiang (COSC3221) 2/9/2007

—————— ——————
Message Queues in Unix msgget() in UNIX
#include <sys/types.h> int msgget(key_t key, int flag) ;
#include <sys/ipc.h> « key = an integer to identify the message queue. Should
#include <sys/msg.h> be unique in a system

*msgflg =» 0: access to an existing queue

int msgget(key_t key, int flag) ; IPC_CREAT bit set : create a queue
int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag) ; « return value
int msgrev(int msqid, void *ptr, size_t nbytes, int flag) ; «-10n error

* non-negative integer on success: message id

msgsnd() in UNIX msgrcv() in UNIX

int msgsnd (int msgid, const void *msgp, int msgsz, int msgflg) ; int msgrcv(int msgid, const void *mshp, int msgsz, long msgtype, int
msgflg) ;

«msgid = msg id returned by msgget()

«msgid = msg id returned by msgget()

emsgp = ptr to a structure

struct msgStruct{ emsgp =» ptr to a msg structure (same as above)

long mType ; /ltype of the message *msgsz size of buffer in msg

char mText[MAX_LEN]; //actual data
¥ smsgtype = 0: get first message in the queue

msgflg = always 0 in our cases

«msgsz Dsize of data in msg >0 : get first message of type msgtype

«msgflg > always 0 in our cases <0 : beyond our consideration

ereturn value
ereturn value

. « -1 on failure
« -1 on failure

« No. of bytes in the message on success
*0on success

Dept. of CS, York Univ. 11

Prepared by Prof. Hui Jiang (COSC3221)

Example: create a msg queue

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define KEY 32894 /*your CSlog in number */

int main() {
int msgid ;

msgid = msgget(KEY,0) ;

if(msgid < 0) {
msgid = msgget(KEY, IPC_CREAT|0666) ;
if(msgid <0)
printf("Error in creating message queuel\n");

#include <sysftypes.h>

#include <sys/msg.h>

#define MAX_LEN 100

typedef struct {
long mType ;
char mText[MAX_LEN] ;

} Message ;

int main() {
int msgid ;
Message msg ;

msgid = msgget(KEY,0) ;

if(msgid < 0) {
printf("Error in creating message queue!\n");
return -1;

}

if(msgrev(msgid, &msg,MAX_LEN,0,0)<0)
printf("Error in receiving message\n") ;

else

printf("Received message: %s\n" msg.mText) ;

if(msgctl(msgid,IPC_RMID,NULL)<0) // Remove the message queue from system
printf(* Error in removing message queue!\n”) ;

else
printf(* queue \n);

Dept. of CS, York Univ.

#include <sysfipc.h> Exa m p I e . rece iVi n g
#define KEY 32894 a messa g e

| -
e Example: sending a
#include <sysimsg.h>

#define KEY 32894 message

#define MAX_LEN 100

typedef struct {
long mType ;
char mText[MAX_LEN] ;

} Message ;

int main() {
int msgid ;
Message msg ;

strepy(msg.mText, "Hello world!") ;
msg.mType =1;

msgid = msgget(KEY,0) ;

if(msgid < 0) {
printf("Error in creating message queue!\n");
return -1;

}

if(msgsnd(msgid, &msg,MAX_LEN,0)<0)
printf("Error in sending message\n") ;
else
printf("sent message successfully\n");

}
——————————

Shared Memory in Unix
#include <sys/shm.h>
int shmget(key_t key, size_t size, int shmflg);
void *shmat(int shmid, const void *shmaddr, int shmflg);
int shmdt(const void *shmaddr);

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

2/9/2007

12

Prepared by Prof. Hui Jiang (COSC3221) 2/9/2007

Operating System Control
Overall OS Control Structures
Structures .
Image
« Tables are constructed for each entity the operating system > " [rrocess
manages. Memory | 1
o
. Files
— Process table: PCBs and process images. —
— Memory table: Allocation of main memory to processes;
Protection attributes for access to shared memory regions.
Primary Process Table
Process 1
— File table: all opened files; location on hardware; Current Proces 2
Status. Proces 3 'Tfn?:;'j
Process
— |/Otable: all I/O devices being used; status of I/O operations. : "

Execution of Operating System

Mode switch

« Non-process Kernel
— Execute kernel outside of any process

— Operating system code is executed as a separate entity that
operates in privileged mode

VS.

Process switch
(context switch)

« Execution Within User Processes
— Operating system software within context of a user process

— Process executes in privileged mode when executing
operating system code

- RECIRS v
Process Switching Functions

(b) OS functions execute within user processes

« Process-Based Operating System Process Switching Functions

— Implement operating system as a collection of system (¢) OS functions execute as separate processes

processes
— Useful in multi-processor or multi-computer environment Relationship Between Operatin
System and User Processes

Dept. of CS, York Univ. 13

